Blog Archive

Recent Blog Comments

said on 09-Mar-2017 14:51 at
News | Bosch at the Mobile World Congress 2017: the safer vehicle of the fu
Tom said on 30-Aug-2016 17:59 at
Special: Lust auf Technik - Löcher bohren
Scooter said on 24-Aug-2016 11:05 at
News | Rock ‘n‘ eRoller for Berlin

News | A grid from Stralsund to Plauen

Bosch is supplying software solutions for a smart energy grid in northeastern Germany

While wind and the sun are excellent sources of energy, the amount of energy they provide depends to a large extent on weather conditions, and is thus unpredictable. To ensure a successful transition from dependence on fossil fuels to renewable energy sources, consumption and production must be better synchronized. This can be done by setting up a smart grid that links system components. These components can communicate with each other almost in real time via an “energy internet.”



The government-funded WindNODE project, which was launched in northeastern Germany in December 2016, focuses on building such a network. The project is part of the “Smart Energy Showcases – Digital Agenda for the Energy Transition” (SINTEG) program, which is sponsored by the German Federal Ministry for Economic Affairs and Energy. The region, which comprises six German states, is particularly suitable for this project: 42 percent of its total energy demand is already being met with renewable energy sources.  The sparsely settled areas where large quantities of wind energy are produced are connected to urban centers and a range of storage solutions via a smart grid. The findings from WindNODE are expected to provide the knowledge required to implement smart grids on a larger scale.

Providing more intelligent measurements and smart coordination among installations

Bosch Software Innovations (SI) is one of several companies playing an active role in driving the project forward. For instance, Bosch is supplying various software solutions to ensure that the power grid functions efficiently and securely. The goal is to better utilize the capacity of the available infrastructure of intelligent measurement systems (iMsys), and thus increase profitability.

With the “Virtual Power Plant Manager,” the operation of decentralized facilities such as thermal power stations, small solar power installations, and storage systems can be actively managed. If, for example, more electricity is being produced than is needed, production can be curtailed or excess energy temporarily stored by employing a radio ripple control. In this way, the power grid stabilizes itself in a matter of seconds. This is just one way that software can be used to reduce the burden on power grids when energy is fed in from renewable sources – thereby also reducing grid expansion costs.

More information on the WindNODE project can be found here (only in German available).

News | Power from the tides

Bosch Rexroth Austria provides hydraulics for the world’s biggest tidal power plant 

Unlimited resources, a high level of safety, and no CO2 emissions – tidal power plants make it possible to generate power in an eco-friendly and sustainable manner. The world’s biggest power plant of this kind went into operation in 2011 in Sihwa-ho, South Korea, and generates 254 megawatts of completely emissions-free power. This is enough power to supply a city of 500,000 with electricity.   

Photo: Tidal power plant / Andritz Hydro

The power plant was mainly the product of chance: the man-made Sihwa lake was initially intended to protect the land from the ocean and to serve as a freshwater reservoir for agriculture. However, the water quality in the artificial lagoon deteriorated so quickly that water exchange with the ocean was the only viable solution. The state water authority thus combined the necessary with the useful and quickly turned the levee a dam.

The results were astonishing: since 2011, the power plant has reliably provided power, and has since restored the initial water quality in the artificial lagoon. This is because around 25 percent of its water is exchanged with every tide. The dam, which is 12.7 km long, contains ten pipe turbines, each of which generates 25.4 MW of power . Bosch Rexroth Austria provided the plant’s customized hydraulic aggregates. Their guide and rotor blades can be adjusted to ensure the optimal performance of the turbines throughout the tidal range of eight meters. The aggregates can be operated with a biodegradable hydraulic fluid and are particularly durable, even in this challenging environment. 

More information on Bosch Rexroth hydraulic technology at the Sihwa-ho tidal power plant can be found here.

News | The smart power network of the future

Bosch software plays a key role in the energy turnaround



Stromnetz Berlin supplies energy to 3.6 million people 24 hours a day, every day. To continue to reliably meet this commitment while also increasingly making use of renewable energy, the Berlin-based energy supplier has now joined forces with Bosch Software Innovations and e*message to develop a piece of radio-controlled, intelligent software – StromPager.
As a result of the energy turnaround in Germany, grid operators are faced with the challenge of pooling electricity from decentralized production in photovoltaic systems, wind farms, and combined heat and power plants, and controlling it so as to create a constant flow of energy. Unlike conventional power plants, this kind of production is no longer dictated solely by demand, but rather also depends on environmental factors such as wind, sun and tides. If it is particularly sunny, or if there are frequent storms, more energy is fed into the grid than if it is still and rainy. Intelligent solutions are therefore required to ensure a stable supply without overloading the grid.
The StromPager represents precisely this kind of flexible solution. Decentralized generation plants such as wind farms and combined heat and power plants and power stores can be switched on and off at the click of a mouse. Electric vehicles can also be integrated. Using rapid and dynamic controls, they can serve as storage devices when they are plugged into a charging station, and thus optimize grid utilization. The radio-based controller uses the same pager technology that proved so valuable to authorities and emergency services in the past. It is more reliable and cost-effective than the audio-frequency ripple-control devices used previously.
“This is another important step toward a smart energy grid. Everyone involved benefits from this new, reliable, and stable ripple-control technology that can also be used in other cities to improve load and generation management. It cuts costs and increases flexibility for generators, operators and users,” says Michael Hahn, Chief Operating Officer of Bosch Software Innovations GmbH. “This project shows just how pioneering our software is and makes an important contribution to the energy turnaround.”
More information about smart power network can be found here



Special : Technology for the energy turnaround

Virtual power plants are helping push the energy turnaround forward



Renewable sources of energy play a decisive role in efforts to significantly reduce CO2 emissions around the world. However, the transition to a sustainable energy supply can only succeed if energy from renewable sources can contribute to the basic supply quickly and reliably. In other words, even when the wind is not blowing or sunshine is nowhere to be seen, power must continue to flow seamlessly into the grid. Virtual power plants can ensure that this is the case. Such plants are complex systems that can pool the power generated by photovoltaic arrays and wind parks in a single storage system. Virtual power plants can offset fluctuations between energy supply and demand. As a result, they help provide consumers with power from renewable sources of energy as needed, and are thus pushing the energy turnaround forward.




From wind turbines and energy storage systems to software-based control systems, Bosch offers a broad range of solutions. For more information on virtual power plants, a sample project, and an interview with an expert on the matter, please consult our current online special: Technology for the energy turnaround.

Interview : Virtual power plants

The energy turnaround is far more than a technical challenge


Professor Manfred Fischedick, vice-president of the Wuppertal Institute for Climate, Environment, and Energy, on decentralized power supply concepts, innovative energy storage solutions, and the need to involve consumers more in redesigning the energy system. 


By 2050, renewable sources of energy are set to make up 80 percent of Germany's energy mix. What role will virtual power plants play in this regard?

To integrate renewable sources of energy into the current supply system, we have to tackle several challenges. One of them is managing their expansion more intelligently than we have so far. This applies both to the fuel mix and the geographical distribution of energy. We need to expand and strengthen the grid, and ensure efficient load management. In addition to this, high-performance storage systems are required, as are power-to-x solutions. These make it easier to turn power into more storable forms of energy such as heat, hydrogen, and fuel. With the help of modern information and communication technology, virtual power plants bring the energy system's individual elements together. They can be decisive in including renewable sources in system services, for instance by making balancing energy available.


What are currently the biggest challenges on the path to a decentralized energy supply?

The energy turnaround and the resulting need to change our energy systems is a complex transformation process, especially in light of today's central coal-fired and nuclear power plants. Promoting renewable, decentralized sources of energy not only calls for technical solutions that reliably integrate solar and wind power, both of which are heavily weather-dependent. It also involves addressing another decisive topic: the future design of the energy and power market, which needs to ensure a reliable power supply and stable systems. In order to succeed, the energy turnaround must involve tackling infrastructure challenges and improving social acceptance. These two factors are crucial. Ultimately, this is a project that calls for broad participation, and which will take a generation. We can only master the challenges ahead if everyone commits. Clearly, the challenges of the energy turnaround are not only technical in nature.


And yet technical innovations are an important component of the enegy turnaround's success. How well developed are current storage and control systems?

The use of storage power plants is not new to the electricity industry. To name just one example, we have been using pumped-storage plants for decades. However, the operating conditions for these very plants have changed. In the past, the rule of thumb was that electricity prices were high during the day and low at night. This reflected the laws of supply and demand. But as renewable sources of energy are increasingly being fed into the grid, such rigid rules no longer apply. And this is why today's storage systems must be far more flexible. In light of the energy turnaround, continuing work to further to develop storage technologies thus makes sense. This applies to everything from advanced battery concepts and compressed air reservoirs to redox flow batteries, flywheel energy storage, and superconducting coils. 


What types of storage systems will be needed in the future?

In the long term, there will be an ever-greater need for systems that can store power for longer periods of time. From today's point of view, only chemical storage systems come into question. With such systems, power can be stored indirectly in the form of hydrogen, synthetic methane, or synthetic liquid fuels. Even though the basic principles of these "power to gas" and "power to fuel" concepts already exist, a number of development steps must still be taken on the road ahead. Above all, storage costs must be significantly reduced. In addition to this, managing power generation and demand intelligently via load management will be decisive in the future. Virtual power plants are the perfect places to do this. In recent years, there have been a number of demonstration projects that provided valuable insights. Among other things, they demonstrated that by making system services available, virtual power plants could potentially become the cornerstone of a promising and safe energy supply for the future.


What must companies consider to succeed in the market for a decentralized energy supply?

Above all, they must be aware that technical innovations alone are not sufficient. To redesign the energy system, a link must be drawn between technologies and social change. This is needed to develop system innovations. Technologies require the right framework, for instance intelligent service offers and adequate connections to infrastructure. Innovations can only succeed on the market once this framework has been established.


Which political framework conditions are needed to push the expansion of virtual power plants ahead?

In the coming years, the energy and electricity markets need to be overhauled, or rather redesigned. The current system is strongly based on a power generation structure in which large power plants dominate. During the period of transition, ensuring that there is sufficient incentive for the establishment of central system services is important, as this is the only way to maintain a reliable supply. The aim should be to find a solution that is as competitively neutral as possible, one that doesn't favor certain technologies over others. In such a political framework, virtual power plants will find their place.


How is power going to shift in the global energy market as a result of the energy turnaround?

A few large companies still dominate the energy market, but it will become more complex in the future. It is conceivable that models promoting self-sufficiency will become more common, and that new actors with specific service offers will enter the energy market. Thanks to their proximity to customers, public utility companies will one day also have good opportunities to position themselves with customized service offers in the field of renewable sources of energy and energy efficiency. Overall, the market of the future will be more service-oriented, and not nearly as driven by the simple selling of kilowatt-hours of power or cubic meters of gas. 



More information on Bosch's efforts to shape the future of energy can be found here.